The nearness problems for symmetric matrix with a submatrix constraint
نویسندگان
چکیده
منابع مشابه
Matrix Nearness Problems with Bregman Divergences
This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence. Bregman divergences offer an important generalization of the squared Frobenius norm and relative entropy, and they all share fundamental geometric properties. In addition, these divergences are intimately connected with exponential families...
متن کاملDecomposition Methods for Sparse Matrix Nearness Problems
We discuss three types of sparse matrix nearness problems: given a sparse symmetric matrix, find the matrix with the same sparsity pattern that is closest to it in Frobenius norm and (1) is positive semidefinite, (2) has a positive semidefinite completion, or (3) has a Euclidean distance matrix completion. Several proximal splitting and decomposition algorithms for these problems are presented ...
متن کاملMatrix Nearness Problems and Applications ∗
A matrix nearness problem consists of finding, for an arbitrary matrix A, a nearest member of some given class of matrices, where distance is measured in a matrix norm. A survey of nearness problems is given, with particular emphasis on the fundamental properties of symmetry, positive definiteness, orthogonality, normality, rank-deficiency and instability. Theoretical results and computational ...
متن کاملThe submatrix constraint problem of matrix equation AXB+CYD=E
We say that X = [xij ]i,j=1 is symmetric centrosymmetric if xij = xji and xn−j+1,n−i+1, 1 ≤ i, j ≤ n. In this paper we present an efficient algorithm for minimizing ‖AXB + CY D − E‖ where ‖ · ‖ is the Frobenius norm, A ∈ Rt×n, B ∈ Rn×s, C ∈ Rt×m, D ∈ Rm×s, E ∈ Rt×s and X ∈ Rn×n is symmetric centrosymmetric with a specified central submatrix [xij ]r≤i,j≤n−r, Y ∈ Rm×m is symmetric with a specifie...
متن کاملOn Matrix Nearness Problems: Distance to Delocalization
This paper introduces two new matrix nearness problems that are intended to generalize the distance to instability and the distance to stability. They are named the distance to delocalization and the distance to localization due to their applicability in analyzing the robustness of eigenvalues with respect to arbitrary localization sets (domains) in the complex plane. For the open left-half pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.01.033